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1. Abstract 
The main objective of the program is to investigate various physical phenomena and device 
structures that can lead to potential applications to all optical storage and processing.  The 
physical effects include electro-magnetically induced transparency (EIT), coherent population 
oscillation (CPO) in semiconductor quantum wells (QW) or dots.  
We carried out experimental implementation of EIT from electron spin coherence in a GaAs 
quantum well waveguide for the first time.  We designed and fabricated the waveguide structure.  
We also designed and fabricated a miniature waveguide coupler attached to a cold finger in an 
optical cryostat.  The EIT experiment using double-V energy configuration was carried out for 
the first time on a (110) QW waveguide.  An absorption dip of ~10% indicates a slow down 
factor of 1000 was obtained with a spectral width ~ 1GHz at 4K.  From the spectral width, the 
spin coherence lifetime can be inferred to be ~1 ns at 4K.  We carried out frequency-resolved 
measurements of electron spin coherence lifetime from the measured EIT spectral linewidth. An 
asymmetry in the resonance lineshape was observed.  All results will be critical for 
understanding the physical properties of (110) QW waveguide and implementation of optical 
delay lines for signal processing. 
1.1 EIT in 110 GaAs QW Waveguide 
We proposed a novel double-V energy configuration to achieve electromagnetically induced 
transparency (EIT) in semiconductors [1-2], leveraging the use of long electron spin coherence 
reported on (110) GaAs quantum wells (QW) [3-5].  Preliminary data was reported using (100) 
GaAs QWs at 50K [1].  Here, we report EIT signatures in a single GaAs QW waveguide grown 
on a (110) GaAs substrate.  The electron spin coherence lifetimes were inferred from the EIT 
transparency window under various operating conditions, including temperature, pump power, 
and wavelength.  This measurement is in contrast to previous spin lifetime measurements using 
pulsed excitation.  We also show an anomalous EIT lineshape dependence on wavelength.    
Our technique for measuring spin coherence is based on Ref. [1], where electron spin population 
is induced and measured optically with continuous-wave (CW) lasers. This is in contrast to 
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previous work relying on pulsed excitation [3-5], which does not allow for wavelength 
resolution. We use a CW pump-probe configuration to induce spin coherence at the degenerate 
wavelength. The pump is a single frequency Ti:Sapphire ring laser and the probe is external 
cavity tunable diode laser. The two beams collinearly couple into the GaAs QW waveguide. Our 
sample is a GaAs(130Å)/Al0.3Ga0.7As single QW slab waveguide, ~150 μm long, grown by MBE 
on an undoped (110) substrate. The photoluminescence (PL) linewidth is very narrow ~2 meV at 
10K, indicating excellent quality.  The differential transmission (ΔT) is measured via lock-in 
detection. The pump wavelength is tuned within the light hole (LH) QW absorption peak and the 
detuning between the probe and pump is scanned over a few GHz. Near zero detuning there is a 
peak in ΔT, attributed to EIT arising from long electron spin coherence.   
The coherence resonance arises when the strong pump beam (TM polarized) couples a valence 
(LH) state to a conduction state of definite spin while the weak probe beam (TE polarized) 
couples the same valence state to a conduction state of opposite spin. The transition between the 
two conduction states is not dipole-allowed, forming a “V” EIT system in which the pump field 
and the coherence of the “dark” transition inhibit probe absorption. The coherence between the 
conduction band states is the electron spin coherence lifetime and as such the coherence lifetime 
can be calculated from the linewidth of the induced transparency.  We characterize ΔT as a 
function of pump power and wavelength.  The ΔT first increases with pump power until reaching 
a maximum and then reduces slowly, as predicted by theoretical calculations. A maximum ΔT/T 
of 10.2% was obtained at 7.6 mW pump power at 40K.   
Figure 1 shows such peaks in ΔT, plotted at various temperatures for 5 mW pump power. As the 
temperature is increased from 4.2 K to 100 K, the linewidth of the resonance remains roughly 
constant, with the corresponding spin coherence time ~200 ps, as shown in Figure 2. This value 
is comparable to other reported low-temperature spin measurements, but does not increase as T0.6 
above 20 K as in Ref [3]. We note that sample variation may play a large role in both the τs value 
and behavior [3,4], and that the temperature dependence of the n-doped sample of Ref. [3] is 
somewhat similar to our measurements. 
The dependence of spin coherence lifetime on pump power is shown in Figure 3. We measure a 
monotonic decrease of τs with increasing excitation power, following the trend of Ref. [3]. As 
temperature is increased, the dependence on pump power weakens. At 4.2 K the dependence is 
roughly I-2/3, at 20 K ~ I-1/2, and at 40 K ~ I-1/3.  This trend is qualitatively in agreement with that 
reported in [3]. 

1.1.1 References 
1. S. Sarkar, P. Palinginis, P.C. Ku, C. J. Chang-Hasnain, N. H. Kwong, R. Binder, H. Wang, 

“Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence 
without spin precession,” Phys. Rev. B 72, 035343 (2005). 

2. S.-W. Chang, S. L. Chuang, C. Chang-Hasnain, and H. Wang, "Slow light using 
electromagnetically induced transparency in [110] strained quantum wells," American 
Physical Society, March Meeting, Los Angeles CA, (2005). 

3. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, “Spin Relaxation in 
GaAs(110) Quantum Wells,” Phys. Rev. Lett 83, 4196 (1999). 

4. T. Adachi, Y. Ohno, F. Matsukura, H. Ohno, “Spin relaxation in n-modulation doped 
GaAs/AlGaAs (110) quantum wells,” Physica E 10, 36 (2001). 
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5. S. Dohrmann, D. Hagele, J. Rudolph, M. Bichler, D. Schuh, M. Oestreich, “Anomalous Spin 
Dephasing in (110) GaAs Quantum Wells: Anisotropy and Intersubband Effects,” Phys. Rev. 
Lett. 93, 147405 (2004). 

 
 
 
 
 
 
 
 
 
 
 
 
1.2 Optical Injection Locking of VCSEL 

Using ultra-strong optical injection technique, we achieved DBP=1 for a high-speed 
modulated signal, with the highest speed obtained being ~14 GHz.  The optical group velocity of 
a laser cavity (herein slave laser) is strongly effected by its threshold gain.  Under injection 
locking, i.e. when the slave laser is subjected to the injection of a strong CW light source, the 
slave laser’s lasing wavelength is pinned by the master laser.  Due to the stimulated emission 
from the master laser, the gain required by the slave laser is greatly reduced in value.  Thus, the 
carrier density is reduced, which red-shifts the slave cavity (due to a non-zero linewidth 
enhancement factor or alpha-parameter).  

In our novel experiment, two room-temperature 1.55 µm VCSELs were used as the 
master and slave lasers.  We modulate the master laser with a single-tone sinusoidal signal, 
creating two side bands.  The optical carrier frequency acts as the CW mater line that locks the 
slave laser wavelength and shifts its cavity spectrum.  The side bands thus experience different 
phases, resulting in a time advance or delay of the sinusoidal signal.  Total delay as much as 2π 
is achieved for modulation frequency up to 14 GHz, as shown in Fig. 4.  Tunable delay can be 
achieved by changing the detuning or drive current.  This is the highest DBP*bandwidth product 
achieved. 
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Fig 2. Spin lifetime vs temperature. For all 
points pump intensity I=5 mW except at 

20K (square) where I=6.6 mW. 

1 10

100

1000

 τ
s [p

s]

 4.2K
 20K
 40K

Pump Power (mW)
 

Fig. 3. Spin lifetime vs pump power for different 
temperatures. At 4.2 K the dependence is roughly 

I-2/3, at 20 K ~ I-1/2, and at 40 K ~ I-1/3. 
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Fig. 4 Tunable delay/advancement of 2π for a 14 GHz 

signal using optical injection locked VCSEL. 

1.3 Four-wave Mixing in a Self-Pumped Grating SOA  
We recently demonstrated slow light achieved in an SOA with DBP~0.75 using an 

induced gain/index change due to the interaction of a pump, probe and the gain medium, e.g. via 
four-wave mixing in SOA.  Mostly recently, we modified the approach to include two counter 
propagating optical pump beams and an optical grating.  The optical grating allows us to work at 
the edge of the stop-band to increase the delay.  The counter propagating beam enables us to 
achieve a uniform slow-down factor along the cavity to minimize propagation dispersion.   

We realized the approach using a DFB laser as a self-pumped grating SOA.  The probe 
laser, modulated by a single-tone sinusoidal signal at 2GHz, is coupled into the DFB SOA. Since 
the DFB lases at its stop-band edge, at which a fast phase change occurs, this can increase the 
delay or advancement of the modulation signal. We achieved a DBP=1 or phase change of 2π 
(Fig. 5).  Continuous tunable delays are obtained by changing the detuning or drive current.       
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Fig. 5 Delay of 2π on a 2 GHz sinusoidal signal. Tunable delay is achieved by varying the wavelength detuning 

between pump and probe. 
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